来源:2018-09-09 13:40:00 热度:

摩拜 & 京东联合利用智能单车数据挖掘违章停车

AI中国 网 https://www.cnaiplus.com

背景

违章停车问题是现在大城市普遍需要面对的难题。随着汽车保有量增加,停车位供不应求,违章停车变得十分严重。目前检测违停常用的方法是交警巡逻。这样的方法耗费大量人力,且效率不高。此外,随着城市中摄像头的采用,基于视频的违停检测技术也开始推行。然而,摄像头及检测系统的部署和维护非常昂贵,最终也导致用于检测违停的摄像头覆盖率不足。

摩拜的兴起、摩拜的数据

幸运的是,近年共享单车兴起并广受欢迎。以摩拜为例,摩拜单车在北京拥有超过百万的订单。而摩拜单车的用户在使用过程中,记录了大规模、细粒度的非常有价值的轨迹信息。违章停车会对自行车的骑行线路产生影响,使其不同于正常骑行轨迹。如果在某一路段获得了大量模式类似的轨迹,就可以对当前路段是否有违章停车进行推测。

论文:Detecting Illegal Vehicle Parking Events using Sharing Bikes' Trajectories

论文链接:http://urban-computing.com/pdf/kdd2018illegalparking.pdf

摘要:违章停车是大城市中普遍存在的问题。违章停车引起交通拥堵,也会引发交通事故。传统的交警巡逻、摄像监控方案,会耗费的大量人力物力,很难覆盖整个城市。共享单车的兴起产生了大量且质量高的轨迹数据,为我们检测违章停车提供了新的机遇。因为我们观察到,大多数违章停车发生在路边,会对自行车骑行轨迹造成影响。为此,我们提出了基于共享单车轨迹数据的违章停车检测技术,该技术主要包含了两个模块:一是预处理模块,包含了有针对性的相应轨迹清洗、路网匹配、轨迹索引方案;二是检测模块,该模块对正常轨迹建模,从待测轨迹中提取特征,再通过假设检验方法检测违章停车。该系统部署于摩拜公司内部云平台。最后,我们会展示详细的实验与许多有意思的实地考察。

方法

系统主要分为两个模块,预处理和检测。

预处理模块主要分三个步骤:1. 通过停留点检测和速度限制清洗数据;2. 对单车轨迹进行地图匹配。与以往机动车轨迹地图匹配不同的是,该工作去掉路网中的高架路、道路方向限制和限速,以适应自行车轨迹。并且,论文介绍了基于平均距离和轨迹方向的错误匹配过滤方法,有效解决了自行车轨迹脱离路网(例如骑到居民区或者公园里的轨迹)的现象;3. 对已清洗、已匹配的轨迹数据,进行路段 ID 进行倒排索引建立,再以时间戳进行二级索引建立。以得到快的数据获取速度。

在检测模块,作者阐明了三个难点及应对方法:1. 为了应对违停检测正样本难获取性,和轨迹模式在违停时的多样性,该工作采用了单类学习(One-class Learning)的思想。即只学出正常情形,再进行

AI中国 网 https://www.cnaiplus.com

本文网址:

欢迎关注微信公众号:人工智能报;合作及投稿请联系:editor@cnaiplus.com

AI中国号...

关注微信公众号,了解最新精彩内容