人工智能 AI 正在加快速度从云端走向边缘,进入到越来越小的物联网设备中。而这些物联网设备往往体积很小,面临着许多挑战,例如功耗、延时以及精度等问题,传统的机器学习模型无法满足要求,那么微型机器学习又如何呢?
在 NASA 的推动下,小型化的电子产品成为了一个完整的消费品行业。现在我们可以把贝多芬的全部音乐作品放在翻领针上用耳机听。——天体物理学家兼科学评论员尼尔 · 德格拉斯 · 泰森 (Neil deGrasse Tyson) 超低功耗嵌入式设备随处可见,再加上用于微控制器的 TensorFlow Lite 等嵌入式机器学习框架的引入,这些使得人工智能驱动的物联网设备大规模普及。——哈佛大学副教授 Vijay Janapa Reddi
能源效率:传输数据(通过电线或无线)是非常耗能的,比板载计算(特别是乘积单元)的耗能多一个数量级。开发能够自己进行数据处理的物联网系统是最节能的方法;
隐私:传输数据可能会侵犯隐私。数据可能被恶意的参与者截获,并且当数据存储在一个单一的位置(如云)时,其安全性就会降低。通过将数据保存在设备上并尽量减少通信,能够提高数据安全性和隐私性;
存储:对许多物联网设备来说,所获得的数据毫无价值。想象一下,一个安全摄像头一天 24 小时都在记录一座大楼的入口。在一天的大部分时间里,摄像机的镜头毫无用处,因为什么都没有发生。通过一个更智能的系统,必要时激活,降低存储容量,传输到云端所需的数据量会减少;
潜在因素:对于标准的物联网设备,如 Amazon Alexa,这些设备将数据传输到云进行处理,然后根据算法的输出返回响应。从这个意义上说,这个设备只是一个通往云模型的便捷门户,就像你和亚马逊服务器之间的「信鸽」。这个设备相当愚蠢,完全依赖互联网的速度来产生结果。如果你的网速很慢,Amazon Alexa 也会变慢。对于具有机载自动语音识别功能的智能物联网设备来说,由于减少了对外部通信的依赖性,因此延迟降低了。
关键字发现。大多数人已经熟悉此类应用程序。「Hey Siri」和「Hey Google」是关键字的示例(通常与「hotword」或「wake word」同义使用)。这样的设备连续收听来自麦克风的音频输入,并且被训练为仅响应特定的声音序列,这些特定的声音序列与学习的关键字相对应。这些设备比自动语音识别 (ASR) 应用程序更简单,并且相应地使用了更少的资源。某些设备(例如 Google 智能手机)利用级联架构来提供扬声器验证以确保安全性;
视觉唤醒词。唤醒词有一个基于图像的类似物,称为视觉唤醒词。我们可以把它想象成一个图像的二值分类来表示某物是存在还是不存在。例如,可以设计智能照明系统,使得其在检测到人的存在时启动,并在人离开时关闭。同样,当存在特定的动物时,野生动物摄影师可以使用它来拍照,而当他们发现有人时,可以使用安全摄像机拍摄照片。
本文网址: