来源:2017-04-21 09:54:00 热度:

只要社会存在偏见,即便是算法操控的机器也无法摘下有色眼镜

AI中国网 https://www.cnaiplus.com

关于未来的AI会是什么样子的讨论从未停止过,有一些专家认为这些机器会具有很强的逻辑性,而且非常客观非常理性。但是普林斯顿大学的研究者们已经证实了,人工智能其实也会学到创造它们的人的坏习惯。

机器学习程序通常是用网络上就能找到的正常人类对话进行训练的,那么它们在学习语言的过程中,也能够同步学到隐藏在字面意思后面的文化偏见。

4月14日的《科学》杂志刊登了研究者们的这项发现。Arvind Narayanan是这篇论文的作者之一。他担任着普林斯顿大学和CITP(信息技术政策研究所)的副教授职位,同时他还是斯坦福法学院网络与社会研究中心合作学者。在他看来,“机器学习在公平和偏见方面表现出的问题会对社会产生极为重要的影响。”

论文的第一作者Aylin Caliskan在普林斯顿大学的博士后工作站进行着研究,他同样加入了CITP。论文还有一位参与者是英国巴斯大学的学生,也加入了CITP。

Narayanan说:”我觉得目前的状况是,这些人工智能系统正在给这些曾经存在过的偏见一个持续下去的机会。现代社会可能无法接受这些偏见,我们也需要避免出现这些偏见。“

研究人员用内隐联想测验(IAT)的方法来测试机器学习程序的偏见程度。自从上世纪90年代华盛顿大学开发出了这套测试以来,它作为人类偏见的试金石,被运用在无数的社会心理学研究中。它的测试过程中会要求人类被测者把电脑屏幕上的单词根据意思进行配对,并以毫秒为单位记录下所花的时间。这项测试也反复证明了,如果被测者觉得两个单词的意思越匹配,他所花的时间就越会明显地短。

比如,“玫瑰”、"雏菊" 这样的单词就可以和正面的词汇 "爱抚"或者“爱情”配对,而"蚂蚁"、"飞蛾"这样的单词就会和“肮脏”、“丑陋”这样的单词配对。人们给描述花的单词配对的时候,会更快地配对到正面词汇上去;同样地,给描述昆虫的单词配对的时候,就会更快地配对到负面词汇上去。

普雷斯顿团队用机器学习版的IAT测试程序GloVe设计了一个实验。GloVe是斯坦福大学的研究者编写的热门开源程序,单独看甚至可以作为一个初创机器学习公司产品的核心功能。GloVe的算法可以算出一段话中指定的单词一同出现的概率。那么经常一同出现的单词之间就有更高的相关性,不经常一起出现的单词的相关性就较低。

斯坦福大学的研究者们让GloVe从网络上广泛获取了大约8400亿词的内容。在这样的词汇库中,Narayanan和他的同事们查看了很多组目标词汇,比如“程序员、工程师、科学家”,或者“护士、老师、图书馆员”,然后跟两组属性词汇比如“男的、男性”和“女的、女性”进行交叉对比,看看人类在这些事情上会有怎样的偏见。

AI中国网 https://www.cnaiplus.com

本文网址:

欢迎关注微信公众号:人工智能报;合作及投稿请联系:editor@cnaiplus.com

AI中国号...

关注微信公众号,了解最新精彩内容