来源:2020-03-11 09:26:00 热度:

用机器学习分析完网红视频后,我发现播放量暴涨的秘密

Ai中国,cnaiplus.com

youtube

在视频成为重要媒介,vlog、视频博主也成为一种职业的当下,如何提高自己视频的播放量,是广大内容生产者最头秃的问题之一。网络上当然有许多内容制作、热点跟踪、剪辑技巧的分享,但你可能不知道,机器学习也可以在其中发挥大作用。

 

join into data上两位作者 Lianne 和 Justin 做了一个硬核的技术分析。他们的分析对象是 YouTube 一个新近崛起的健身博主Sydney Cummings。

 

Sydney拥有美国国家运动医学会(NASM)的私人教练证,同时也是一位跳高运动员。她的账号注册于2016年5月17日,累计播放量27,031,566,目前拥有21万粉丝,每天都稳定更新,很有研究意义。请注意,以下研究都将通过 Python 实现。

 

Sydney Cummings 的标题都有一定套路,比如最近一个标题是《30分钟手臂和强壮臀肌锻炼!燃烧310卡路里!》,通常涵盖时间、身体部位、消耗的卡路里以及其他关于锻炼的描述性词汇。观众点击这段视频之前,就会知道几个信息:

 

  • 30分钟——我将在30分钟内完成整个训练;

  • 锻炼手臂和臀肌——我将致力于手臂和臀肌,专注于力量;

  • 燃烧310卡路里——我会燃烧相当多的卡路里。

     

掌握以上关键信息是预先的准备,接下来还有六个步骤:观察数据、用自然语言处理技术对视频进行分类、选择特征、创建目标、构建决策树、阅读决策树。接下来就和雷锋网一起看看作者究竟是怎么一步一步展开研究的。

 

事前准备:抓取数据

 

其实有很多不同的方法来抓取 YouTube 数据。由于这只是个一次性项目,所以作者选择了一个只需要手工操作,不依赖额外工具的简单方法。

 

以下是分步步骤:

  • 选中所有视频;

  • 右键单击最新的视频并选择“Inspect“;

  • 将光标悬停在每一行上,找到高亮显示了所有视频的最低级别的 HTML 代码/元素级别;

    例如,如果使用 Chrome 浏览器,它看起来就像这样:

    用机器学习分析完网红视频后,我发现播放量暴涨的秘密

    ▲【 图片来源:Sydney’s YouTube Video page 所有者:Sydney】

     

  • 右键单击元素并选择“复制”,然后选择“复制元素”;

  • 将复制的元素粘贴到文本文件中并保存,这里使用 JupyterLab 文本文件并将其保存为 sydney.txt;

  • 使用 Python 提取信息并清理数据。

     

接下来就是有趣的部分了,他们将从这个数据中集中提取特征,并研究是哪些因素影响着播放量。

 

步骤1:观察数据

 

将数据导入到 Python 中是在最后一节中完成的,以下是数据集 df_videos,一共有837个视频。

用机器学习分析完网红视频后,我发现播放量暴涨的秘密

df_videos 有8个特征来描述每个视频细节,包括:标题、多久前发布的、视频长度、播放量、地址、卡路里、发布具体日期、发布至今的天数。

Ai中国,cnaiplus.com

本文网址:

欢迎关注微信公众号:人工智能报;合作及投稿请联系:editor@cnaiplus.com

AI中国号...

关注微信公众号,了解最新精彩内容