来源:2022-05-05 19:58:40 热度:

贝叶斯深度学习:一个统一深度学习和概率图模型的框架

导读:作者 | 王灏 整理 | 维克多 人工智能(AI)的进展显示,通过构建多层的深度网络,利用大量数据进行学习,可以获得性能的显著提升。但这些进展基本上是发生在感知任务中,对于认知任务,需要扩展传统的AI范式。 4月9日,罗格斯大学计算机科学系助理教授王灏,...

贝叶斯深度学习:一个统一深度学习和概率图模型的框架

作者 | 王灏

整理 | 维克多

人工智能(AI)的进展显示,通过构建多层的深度网络,利用大量数据进行学习,可以获得性能的显著提升。但这些进展基本上是发生在感知任务中,对于认知任务,需要扩展传统的AI范式。

4月9日,罗格斯大学计算机科学系助理教授王灏,在AI TIME青年科学家AI 2000学者专场论坛上,分享了一种基于贝叶斯的概率框架,能够统一深度学习和概率图模型,以及统一AI感知和推理任务。

据介绍,框架有两个模块:深度模块,用概率型的深度模型表示;图模块,即概率图模型。深度模块处理高维信号,图模块处理偏推断的任务。

以下是演讲全文,AI科技评论做了不改变原意的整理:

今天和大家分享关于贝叶斯深度学习的工作,主题是我们一直研究的概率框架,希望用它统一深度学习和概率图模型,以及统一AI感知和推理任务。

众所周知,深度学习加持下的AI技术已经拥有了一定的视觉能力,能够识别物体;阅读能力,能够文本理解;听觉能力,能够语音识别。但还欠缺一些思考能力。

“思考”对应推理推断任务,具体指它能够处理复杂的关系,包括条件概率关系或者因果关系。

深度学习适合处理感知任务,但“思考”涉及到高层次的智能,例如决策数据分析、逻辑推理。概率图由于能非常自然的表示变量之间的复杂关系,所以处理推理任务具有优势。

贝叶斯深度学习:一个统一深度学习和概率图模型的框架

如上图,概览图示例。任务是:想通过目前草地上喷头开或关,以及外面的天气来推断外面的草地被打湿的概率是多少,也可以通过草地被打湿反推天气如何。概率图的缺点是无法高效处理高维数据。

贝叶斯深度学习:一个统一深度学习和概率图模型的框架

总结一下,深度学习比较擅长感知类的任务,不擅长推理、推断任务,概率图模型擅长推理任务,但不擅长感知任务。

很不幸,现实生活中这两类任务一般是同时出现、相互交互。因此,我们希望能够把深度学习的概率图统一成单一的框架,希望达到两全其美。

贝叶斯深度学习:一个统一深度学习和概率图模型的框架

我们提出的框架是贝叶斯深度学习。有两个模块:深度模块,用概率型的深度模型表示;图模块,即概率图模型。深度模块处理高维信号,图模块处理偏推断的任务。

值得一提的是,图模块本质是概率型的模型,因此为了保证能够融合,需要深度模型也是概率型。模型的训练可以用经典算法,例如MAP、MCMC、VI。

贝叶斯深度学习:一个统一深度学习和概率图模型的框架

给具体的例子,在医疗诊断领域,深度模块可以想象成是医生在看病人的医疗图像,图模块就是医生根据图像,在大脑中判断、推理病症。从医生的角度, 医疗图像中的生理信号是推理的基础,优秀的能力能够加深他对医疗图像的理解。

贝叶斯深度学习:一个统一深度学习和概率图模型的框架

引申一下,电影推荐系统里,可以把深度模块想象成是对电影的视频情节、演员等内容的理解,而图模块需要对用户喜好、电影偏爱之间的相似性进行建模。进一步,视频内容理解和“喜好”建模也是相辅相成的。

贝叶斯深度学习:一个统一深度学习和概率图模型的框架

具体到模型细节,我们将概率图模型的变量分为三类:深度变量,属于深度模块,假设产生于比较简单的概率分布;图变量,属于图模块,和深度模块没有直接相连,假设它来自于相对比较复杂的分布;枢纽变量,属于深度模块和图模块中相互联系的部分。

下面介绍该框架是如何在实际应用中效果。

推荐系统

推荐系统基本假设是:已知用户对某些电影的喜好,然后希望预测用户对其他电影的喜好。

贝叶斯深度学习:一个统一深度学习和概率图模型的框架

可以将用户对电影的喜爱写成评分矩阵(Rating Matrix),该矩阵非常稀疏,用来直接建模,得到的准确性非常低。在推荐系统中,我们会依赖更多的信息,例如电影情节、电影的导演、演员信息进行辅助建模。

为了对内容信息进行建模,并进行有效提纯,有三种方式可供选择:手动建立特征,深度学习全自动建立特征、采用深度学习自适应建立特征。显然,自适应的方式能够达到最好的效果。

不幸的是,深度学习固有的独立同分布假设,对于推荐系统是致命的。因为假设用户和用户之间没有任何的关联的,显然是错误的。

贝叶斯深度学习:一个统一深度学习和概率图模型的框架

为了解决上述困难,我们推出协同深度学习,能够将“独立”推广到“非独立”。该模型有两个挑战:

1.如何找到有效的概率型的深度模型作为深度模块。希望该模型能够和图模块兼容,且和非概率型模块的效果相同。

2.如何把深度模块连接到主模块里,从而进行有效建模。

贝叶斯深度学习:一个统一深度学习和概率图模型的框架

来看第一个挑战。自编码器是很简单的深度学习模型,一般会被用在非监督的情况下提取特征,中间层的输出会被作为文本的表示。值得一提的是,中间层的表示它是确定性的,它不是概率型的,和图模块不兼容,无法工作。

贝叶斯深度学习:一个统一深度学习和概率图模型的框架

我们提出概率型的自编码器,区别在于将输出由“确定的向量”变换成“高斯分布”。概率型的自编码器可以退化成标准自编码器,因此后者是前者的一个特例。

贝叶斯深度学习:一个统一深度学习和概率图模型的框架

如何将深度模块与图模块相联系?先从高斯分布中提出物品j的隐向量:

然后从高斯分布中,提取出用户i的隐向量:

基于这两个隐向量们就可以从另外高斯分布采样出用户i对物品j的分布,高斯分布的均值是两个隐向量的内积。

贝叶斯深度学习:一个统一深度学习和概率图模型的框架

上图蓝框表示图模块。定义了物品、用户、评分等等之间的条件概率关系。一旦有了条件概率关系,就能通过评分反推用户、物品的隐向量,可以根据“内积”预测未知的背景。

贝叶斯深度学习:一个统一深度学习和概率图模型的框架

上图是整个模型的图解,其中λ是控制高斯分布方差的超参数。为了评测模型效果,我们用了三个数据集:citeulike-a、citeulike-t、Netflix。对于citeulike是用了每篇论文的标题和摘要,Netflix是用电影情节介绍作为内容信息。

实验结果如下图所示,Recall@M指标表示,我们的方法大幅度超越基准模型。在评分矩阵更加稀疏的时候,我们模型性能提高幅度甚至可以更大。原因在于,矩阵越稀疏,模型会更加依赖内容信息,以及从内容提取出来的表示。

贝叶斯深度学习:一个统一深度学习和概率图模型的框架

推荐系统性能提升能够提升企业利润,根据麦肯锡咨询公司的调查,亚马逊公司中35%的营业额是由推荐系统带来的。这意味着推荐系统每提升1%个点,都会有6.2亿美金的营业额提升。

贝叶斯深度学习:一个统一深度学习和概率图模型的框架

小结一下,到目前为止,我们提出了概率型的深度模型作为贝叶斯深度学习框架的深度模块,非概率型的深度模型其实是概率型深度模型的特例。针对深度的推荐系统提出层级贝叶斯模型,实验表明该系统可以大幅度推荐系统的效率。

其他应用设计

贝叶斯深度学习:一个统一深度学习和概率图模型的框架

给定一个图,我们知道边,并了解节点的内容。此图如果是社交网络,其实就是表示着用户之间的朋友关系,节点内容就是用户贴在社交平台上的图片或者文本。这种图关系,也可以表示论文的标题、摘要、引用等等联系。

贝叶斯深度学习:一个统一深度学习和概率图模型的框架

我们的任务是希望模型能够学习到节点的表达,即能够捕获内容信息,又能够捕获图的信息。

解决方案是基于贝叶斯深度学习框架,设计关系型的概率自编码器。深度模块专门负责处理每个节点的内容,毕竟深度学习能够在处理高维信息是有优势的;图模块处理节点节点之间的关系,例如引用网络以及知识图谱复杂的关系。

贝叶斯深度学习:一个统一深度学习和概率图模型的框架

在医疗领域,我们关注医疗监测。任务场景是:家里有小型雷达,会发射信号,设计的模型希望能够根据从病人身上反射的信号,发现病人是否按时用药、用药的次序是否正确。问题在于:用药的步骤非常复杂,需要理清顺序。

基于贝叶斯深度学习概率框架方法,用深度模块处理非常高维的信号信息,用图模块对在医疗专有知识进行建模。

值得一提的是,即使对于不同应用的同一模型,里面的参数具有不同的学学习方式,例如可以用MAP、贝叶斯方法直接学习参数分布。

对于深度的神经网络来说,一旦有了参数分布,可以做很多事情,例如可以对预测进行不确定性的估计。另外,如果能够拿到参数分布,即使数据不足,也能获得非常鲁棒的预测。同时,模型也会更加强大,毕竟贝叶斯模型等价于无数个模型的采样。

下面给出轻量级的贝叶斯的学习方法,可以用在任何的深度学习的模型或者任何的深度神经网络上面。

贝叶斯深度学习:一个统一深度学习和概率图模型的框架

首先明确目标:方法足够高效,可通过后向传播进行学习,并“抛弃”采样过程,同时模型能够符合直觉。

我们的关键思路是:把神经网络的神经元以及参数,看成分布,而不是简单的在高维空间的点或者是向量。允许神经网络在学习的过程中进行前向传播、后向传播。因为分布是用自然参数表示,该方法命名为NPN(natural-parameter networks)。

#参考文献:

A survey on Bayesian deep learning. Hao Wang, Dit-Yan Yeung. ACM Computing Surveys (CSUR), 2020. Towards Bayesian deep learning: a framework and some existing methods. Hao Wang, Dit-Yan Yeung. IEEE Transactions on Knowledge and DataEngineering (TKDE), 2016.

Collaborative deep learning for recommender systems. Hao Wang, Naiyan Wang, Dit-Yan Yeung. Twenty-First ACM SIGKDD Conference on

Knowledge Discovery and Data Mining (KDD), 2015.

Collaborative recurrent autoencoder: recommend while learning to fill in the blanks. Hao Wang, Xingjian Shi, Dit-Yan Yeung. Thirtieth Annual

Conference on Neural Information Processing Systems (NIPS), 2016.:

Natural parameter networks: a class of probabilistic neural networks. Hao Wang, Xingjian Shi, Dit-Yan Yeung. Thirtieth Annual Conference on

Neural Information Processing Systems (NIPS), 2016.

Relational stacked denoising autoencoder for tag recommendation. Hao Wang, Xingjian Shi, Dit-Yan Yeung. Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI), 2015.

Relational deep learning: A deep latent variable model for link prediction.

Hao Wang, Xingjian Shi, Dit-Yan Yeung. Thirty-First AAAI Conference on Artificial Intelligence (AAAI), 2017.

Bidirectional inference networks: A class of deep Bayesian networks for health profiling.

Hao Wang, Chengzhi Mao, Hao He, Mingmin Zhao, Tommi S. Jaakkola, Dina Katabi. Thirty-Third AAAI Conference on Artificial Intelligence (AAAI),

2019.

Deep learning for precipitation nowcasting: A benchmark and a new model. Xingjian Shi, Zhihan Gao, Leonard Lausen, Hao Wang, Dit-Yan Yeung,

Wai-kin Wong, and Wang-chun Woo. Thirty-First Annual Conference on Neural Information Processing Systems (NIPS), 2017.

Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung,

Wai-kin Wong, Wang-chun Woo. Twenty-Ninth Annual Conference on Neural Information Processing Systems (NIPS), 2015.

Continuously indexed domain adaptation. Hao Wang*, Hao He*, Dina Katabi. Thirty-Seventh International Conference on Machine Learning (ICML),

2020.

Deep graph random process for relational-thinking-based speech recognition. Hengguan Huang, Fuzhao Xue, Hao Wang, Ye Wang. Thirty-

Seventh International Conference on Machine Learning (ICML), 2020.

STRODE: Stochastic boundary ordinary differential equation. Hengguan Huang, Hongfu Liu, Hao Wang, Chang Xiao, Ye Wang. Thirty-Eighth

International Conference on Machine Learning (ICML), 2021.

Delving into deep imbalanced regression. Yuzhe Yang, Kaiwen Zha, Yingcong Chen, Hao Wang, Dina Katabi. Thirty-Eighth International Conference

on Machine Learning (ICML), 2021.

Adversarial attacks are reversible with natural supervision. Chengzhi Mao, Mia Chiquier, Hao Wang, Junfeng Yang, Carl Vondrick. International

Conference on Computer Vision (ICCV), 2021.

Assessment of medication self-administration using artificial intelligence. Mingmin Zhao*, Kreshnik Hoti*, Hao Wang, Aniruddh, Raghu, Dina

Katabi. Nature Medicine, 2021.

贝叶斯深度学习:一个统一深度学习和概率图模型的框架

雷峰网雷峰网

本文网址:

欢迎关注微信公众号:人工智能报;合作及投稿请联系:editor@cnaiplus.com

AI中国号...

关注微信公众号,了解最新精彩内容